RSS Feed

자릿수 근 시계

Problem 315

출제 일시 : 2021-01-14 00:07:23

p315_clocks.gif

샘(Sam)과 맥스(Max)는 디지털 시계를 "자릿수 근(digital root)"역주) 시계로 변경해달라고 부탁받았습니다.
자릿수 근 시계는 자릿수 근을 단계적으로 계산하는 디지털 시계입니다.

디지털 시계에 수가 입력되면 그 수를 보여주고 계산을 시작하여 결과를 얻을 때까지의 모든 중간 값을 보여줍니다.
예를 들어, 만일 시계에 수 137이 입력되면 이렇게 보입니다: "137" → "11" → "2" 그리고 다시 다음 수의 입력을 기다리며 완전히 꺼집니다.

모든 자릿수는 상, 중, 하 3개의 수평 세그먼트와 좌상, 우상, 좌하, 우하 4개의 수직 세그먼트, 즉 7개의 발광 세그먼트로 구성됩니다.
숫자 "1"은 우상, 우하 두 개의 수직 세그먼트로 만들어지고, 수 "4"는 중앙 수평 세그먼트와 좌상, 우상, 우하 수직 세그먼트로 만들어집니다. 수 "8"은 모든 세그먼트를 켜서 만듭니다.

시계의 세그먼트가 켜지거나 꺼질 때만 에너지가 소비됩니다.
숫자 "2"는 5번의 전이가 필요한 반면에 숫자 "7"은 단지 4번의 전이만 필요합니다.

샘과 맥스는 서로 다른 두 시계를 만들었습니다.

샘의 시계에 수 137이 입력되면: 시계는 "137"을 보여주고, 모두 꺼진 뒤에, 다음 수("11")가 켜졌다 다시 모두 꺼지고 마지막 수 ("2")가 켜진 뒤에 얼마 있다가 모두 꺼집니다.
예를 들어, 수 137에서 샘의 시계는 다음과 같이:

"137" : (2 + 5 + 4) × 2 = 22번의 전이 ("137" 켜질 때/ 꺼질 때).
"11" : (2 + 2) × 2 = 8번의 전이 ("11" 켜질 때/ 꺼질 때).
"2" : (5) × 2 = 10번의 전이 ("2" 켜질 때/ 꺼질 때).
전체적으로 총 40번의 전이를 필요로 합니다.

맥스의 시계는 다르게 작동합니다. 판넬의 모든 세그먼트를 끄는 대신에 다음 수를 표시하는데 필요하지 않은 세그먼트만 끌만큼 충분히 영리합니다.
수 137에서 맥스의 시계는 다음과 같이:

"137"

:

2 + 5 + 4 = 11번의 전이 ("137" 켜질 때)
7번의 전이 ("11"을 표시하는데 필요하지 않은 세그먼트를 끌 때).
"11"


:


0번의 전이 (수 "11"는 이미 올바르게 다 켜져있음)
3번의 전이 (첫 "1"을 끄고 두 번째 "1"의 아래부분을 끌 때;
상부는 숫자 "2"와 공통임).
"2"

:

4번의 전이 ("2"의 나머지 세그먼트를 켤 때)
5번의 전이 ("2"를 끌 때).
전체적으로 총 30번의 전이를 필요로 합니다.

물론, 맥스의 시계가 샘의 시계보다 작은 전력을 소비합니다.
두 시계에 A = 107와 B = 2×107사이의 모든 소수가 입력됩니다.
샘의 시계와 맥스의 시계가 필요로 하는 전이 횟수의 차이를 구하세요.

역주) 십진법 표기에서 어떤 수의 모든 자릿수를 더한 값을 구하고 또 그 값의 모든 자릿수를 더하고 이 과정을 반복하면 결국에는 10미만의 수가 되고 이를 그 수의 자릿수 근(digital root)이라고 합니다.


로그인 하시면 답안을 제출할 수 있고,
정답을 맞히신 분들은 댓글을 달거나 볼 수 있습니다.